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Abstract
Topological reasoning with Large Language Mod-
els (LLMs) emulates human-like thought pro-
cesses by efficiently exploring various reason-
ing paths over thought trees or graphs. However,
prior works rely on static, task-specific prompt-
ing schedules to decompose problems and syn-
thesize solutions, which are subject to a hyper-
parameter set requiring extensive search for high
query efficiency. Additionally, the task-specific
requirement restricts generalization to novel prob-
lem domains and fails to adapt to varying prob-
lem complexities. In our work, we investigate
the ability of LLMs to guide thought graph ex-
ploration in a multi-agent architecture with pol-
icy agents and reasoning agents. While reason-
ing agents solve decomposed subproblems, LLM
policy agents maintain visibility of the reason-
ing trace, dynamically adaptating the problem-
solving strategy. Through extensive controlled ex-
periments, we observe that in problems with low
decomposition depth, LLM-guided exploration
can match or even outperform static schedules by
up to 3.3×, without any search time required. At
high decomposition depths, existing LLMs incur
performance deterioration of up to 4.4×, high-
lighting the requirement for new solutions to en-
able more flexible and generalizable topological
reasoning with LLMs.

1. Introduction
Large Language Models (LLMs) have demonstrated remark-
able capabilities in a range of natural language processing
tasks including language translation (Feng et al., 2020),
question-answering (Yang et al., 2020) and sentiment analy-
sis (Liu et al., 2021). Additionally, recent work has charac-
terised the unpredictable emergence of abilities in LLMs as
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their parameter count grows (Wei et al., 2022). For instance,
arithmetic reasoning abilities appear to manifest in GPT
architectures beyond 13B parameters, suggesting the exis-
tence of capability thresholds. Despite growing evidence
of these scaling trends, existing models continue to exhibit
low performance in non-trivial reasoning tasks requiring
extensive state-space exploration and strategic planning.

This performance gap can be understood by viewing LLM
reasoning through the lens of cognitive science, which postu-
lates that humans engage in two distinct modes of reasoning
- a fast, intuitive mode (System 1) and a slow, deliberate
mode (System 2). The autoregressive decoding procedure
of LLMs can be viewed as operating in System 1, and recent
research has focused on eliciting reasoning behaviour from
LLMs by engaging models in System 2. Wei et al. 2023
pioneered the elicitation of step-by-step logical reasoning
(CoT), with subsequent work by Wang et al. 2023 demon-
strating improved performance through the sampling and
arbitration along multiple reasoning sequences (CoT-SC).
Yao et al. 2023a formulate concurrent exploration of multi-
ple reasoning paths by scoring reasoning steps, leveraging
tree search algorithms (ToT). Besta et al. 2024 generalize
problem space exploration by formulating thoughts as a
graph, enabling the use of arbitrary transformations such as
node refinement and aggregation (GoT).

Despite the potential of structure-enhanced exploration for
engaging LLMs in deeper levels of reasoning, prior works
rely on predetermined traversal strategies parametrized by a
discrete set of hyperparameters. This approach lacks gener-
ality, as these parameters must be tuned manually or through
extensive bayesian search to achieve high query efficiency,
due to the varying characteristics of each task. We hypothe-
size that the generalization of artificial problem-solving to-
wards (or beyond) human-like abilities in arbitrary domains
requires a mechanism for autonomous exploration, falling
outside the constrained scope of static schedules. Such a
mechanism would present a step towards general intelli-
gent agents capable of leveraging existing world knowledge
while adapting to out-of-distribution tasks.

Motivated by recent improvements in LLM planning and
reasoning, we aim to investigate whether existing LLMs
are capable of acting as autonomous reasoning agents by
formulating thought graphs as interactive environments. We
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Figure 1. Example thought graph in solving a reasoning problem following (i) tree search, (ii) graph-based and (iii) autonomous exploration
schedules. In (i), each node is an attempted solution, with the best-scoring nodes iteratively chosen and refined. In (ii), solutions to
subproblems are merged to solve the original problem. In (iii) our approach, exploration is guided by an LLM policy agent. After a
direct solution (Strategy 1) is unsuccessful, the agent attempts a divide-and-conquer approach (Strategy 2), displaying (a) adaptive
decomposition. Subproblem B is incorrectly solved, leading the agent to (b) self-correct by decomposing it further before (c) aggregating.

equip LLM policy agents (i.e. LLM-based action planners)
with the capacity to autonomously perform transformations
on this graph such as thought proposal/evaluation, aggre-
gation and refinement. As such, we consider the following
research questions: (1) Can LLMs effectively adapt to feed-
back from thought graph environments to dynamically tune
their exploration strategy? (2) can this approach match the
performance of static exploration schedules extensively opti-
mized for a given task? And finally, (3) what are the failure
modes of existing LLMs in guiding thought graph explo-
ration (i.e. factors affecting the ability to produce coherent
exploration plans)?

Figure 1 presents an example of our findings regarding ques-
tion (1), by contrasting an extracted trace of our approach
against static tree search and graph transformation schedules.
In tree search, each node is an attempted solution, with the
best-scoring nodes kept and refined at each tree level (Yao
et al., 2023a). The graph transformation schedule involves
decomposing the starting problem into smaller subproblems,
solving them individually then merging the intermediate re-
sults (Besta et al., 2024). Both are subject to redundancy,
as the exploration is constrained by the schedule parame-
ters, impacting prompt efficiency - the system is unable to

exit early when a solution is found, or adaptively allocate
resources according to the complexity of subproblems. In
our approach, we leverage the planning abilities of LLMs
to choose a transformation action given the current state of
the thought graph. We observe the policy agent displays
adaptive decomposition and self-correction, meaning the
depth of decomposition and query utilization are dynami-
cally tuned according to the complexity of the task.

In summary, our contributions are as follows.

• We present an algorithmic formulation of topological
reasoning schedules subject to a set of hyperparameters,
which generalizes to most existing static approaches.

• We propose a framework for autonomous topological
reasoning by formulating thought graphs as interactive
environments with which LLM agents can interact by
planning and executing graph transformations.

• We perform carefully controlled experiments, showing
that LLM-guided thought graph exploration is highly
sensitive to decomposition depth, with policy agents
outperforming optimized static schedules at low depths
by up to 3.3× (despite no search cost).
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2. Related Work
LLMs as Planning Agents

Significant research has focused on leveraging LLMs for
guiding action policies, such as in tasks requiring coordina-
tion of heterogeneous model ensembles (Shen et al., 2023).
LLMs have also been deployed as action planners in inter-
active environments (i.e. where feedback is provided to
the action scheduler), such as solving computer tasks (Kim
et al., 2023) and online shopping (Yao et al., 2023b). How-
ever, some works have outlined the instability in obtaining
action plans over long-range horizons, where LLMs have
been shown to repeatedly generate invalid action plans (Xie
et al., 2023). This limitation has been tackled by works such
as (Shinn et al., 2023), which propose an episodic memory
buffer of previous trials, prompting LLMs to learn from past
experiences.

Topological Reasoning with LLMs

Following the introduction of topological reasoning with
ToT (Yao et al., 2023a) and GoT (Besta et al., 2024), sev-
eral works explored methods of improving their query effi-
ciency, which suffer from high computational demand due
to iterative LLM prompting. (Hu et al., 2023) proposed
combining one-shot generation (i.e. LLM decoding without
iterative prompting) with ToT search in visual reasoning
benchmarks. (Sel et al., 2024) compresses thought graph ex-
ploration traces as in-context examples, prompting LLMs to
reproduce the exploration in fewer queries, although this ap-
proach is not suitable for interactive environments . Finally,
(Ding et al., 2024) combines pre-trained reinforcement learn-
ing with Monte-Carlo search on thought graphs to generate
solution paths with minimal LLM intervention, although
this requires extensive training and lacks task generality.

Despite improvements in query efficiency, few works have
targeted the generality of topological reasoning by exploring
dynamic exploration schedules. While (Yao et al., 2023a)
leverage standard tree search algorithms, (Long, 2023) hy-
pothesize that tree search can be enhanced through trained
policy networks to guide node backtracking. However, this
idea is not explored fully and their evaluation is focused on

heuristics-based rules. As such, our work presents the first
effort towards generalized topological reasoning through
autonomous thought graph exploration.

3. Static Exploration Schedules
We consider a reasoning problem to be stated in language
as an ordered tuple of tokens p = (t1, ..., tm), where each
token t ∈ V belongs to a vocabulary space V . We define
a thought τ = (t1, ..., tj) as a sequence of tokens sampled
autoregressively from an LLM parametrized by θ following
Equation 1. This consists of a language representation of an
intermediate step towards the solution to the problem.

ti ∼ P (ti | t1, . . . , ti−1; θ) (1)

A thought sequence can be represented as an ordered tuple
of thoughts S = (τ1, τ2, ..., τk) of length k, such that the
final thought τk represents a candidate solution to the prob-
lem p. A thought tree Tr can be represented as (V, E), where
V is a set of thought vertices and E is a set of edges connect-
ing them. The tree can be parametrized with a depth of d
and a width of w, denoting the number of nodes per level.
Additionally, each thought τ ij (j-th thought at depth i) has
a value λ(τ ij) corresponding to the probability of reaching
a valid solution for the starting problem. Hence, tree-based
thought exploration involves finding a path T ∈ V that
maximizes the cumulative value of thoughts, as follows.

T ∗
r = argmax

T

∑
τ∈T

λ(τ) (2)

A thought graph Gt can also be represented via the tuple
(V, E), with no imposed restriction on the arrangement of
thoughts and edges. Thought graph exploration can be re-
garded as a sequence of m graph transformations as shown
in Equation 3, where each ϕi : G

i
t → Gi+1

t modifies the set
of nodes and edges. The full set of considered transforma-
tions and their formulations are shown in Table 1.

G∗
t = ϕ1 ◦ ϕ2 ◦ ... ◦ ϕm(G0

t ) (3)

A static thought graph exploration schedule can be com-
posed as shown in Algorithm 1, and parametrized by the

Table 1. Thought graph transformations. Each transformation is defined as ϕ(Gt,m, S) = (V ∪ V + \ V −, E ∪ E+ \ E−), where
Gt = (V,E) is a thought graph, S ⊂ V is a subset of nodes, m is the multiplicity (number of attempts), and E , R, A represent arbitrary
functions for node expansion, refinement and aggregation, respectively. The sets V +, V −, E+, E− are defined as follows.

Transformation Symbol V+ V− E+ E−

Decompose ϕdec {E(v)|v ∈ S} ∅ {(u, v)|u ∈ S, v ∈ V +} ∅
Solve ϕsol {S(v)|v ∈ S} ∅ {(u, v)|u ∈ S, v ∈ V +} ∅
Refine ϕref {R(t)|t ∈ S} ∅ {(u, v)|u ∈ S, v ∈ V +} ∅
Reduce ϕred ∅ S ∅ {(u, v)|u ∈ S ∨ v ∈ S}

Aggregate ϕagg A(S) ∅ {(u, v)|u ∈ S, v ∈ V +} ∅
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tuple (B,Red, Ref , S
m, Am, Rm

ef ). B ∈ N represents the
depth of decomposition of the original problem, such that
ϕdec splits the original problem into nodes M1, ...,MB .
N1, ..., NB represent the solution nodes to each of the sub-
problems. Am represents the multiplicity of aggregation, i.e.
the number of aggregation attempts, such that Ok represents
the kth aggregation attempt. Red, Ref ∈ {0, 1} indicate
whether the ϕred and ϕref transformations are applied after
branch aggregation, respectively. Rm

ef represent the multi-
plicity of refinement, and the kth refined node is represented
by Pk. Finally, Q represents the final solution node.

Algorithm 1 GoT Static Exploration Schedule
1: Require: Starting graph Gt, branch depth B, allow

reduce Red, allow refine Ref , solve, aggregate, and
refine multiplicities Sm, Am, Rm

ef

2: M1, ...,MB , N1, ..., NB , O, P,Q← ∅
3: M1, ...,MB ← ϕdec(Gt, B)
4: for i = 1 to B
5: Ni ← ϕsol(Gt, S

m,Mi)
6: end for
7: O1, ..., OAm ← ϕagg(Gt, A

m, {N1, ..., NB})
8: if Red

9: O ← ϕred(Gt, {O1, ..., OAm})
10: else
11: O ← O1 ∪ ... ∪OAm

12: end if
13: if Ref

14: P1, ..., PRm
ef
← ϕref (Gt, R

m
ef , O)

15: Q← ϕred(Gt, A
m, {P1, ..., PRm

ef
})

16: else
17: Q← O
18: end if
19: Return: Q

Algorithm 1 represents a standard divide-and-conquer strat-
egy. The ϕdec transformation decomposes the starting prob-
lem into B subproblems, which are solved individually
(ϕsol). The aggregation of the subproblem solutions is at-
tempted Am times, as the ϕagg transformation has a non-
zero probability of failure. If Red = 1, a single aggregation
attempt is kept, while others are removed from the graph.
If Ref = 1, the remaining aggregation attempts are then
refined wth ϕref , and the highest-scoring attempt is kept as
the final solution.

4. Autonomous Thought Graph Exploration
Beyond the fixed schedule shown in Algorithm 1, the explo-
ration schedule of a thought graph can be generalized as a
Markov Decision Process (S,A,Pa), where:

• State st ∈ S: represents an arrangement of nodes and
edges in the thought graph, with the associated value

of each node, i.e. st = (V, E , {λ(v)|v ∈ V}).

• Action a ∈ A: indicates which transformation to per-
form on the thought graph, and which nodes to perform
it on, i.e. A = {(Vs, ϕ) | Vs ⊂ V, ϕ ∈ Ω}, where Ω is
the set of transformations (Table 1).

• Transition probability Pa(s, s
′): represents the prob-

ability of transitioning to a new state s′ assuming an
action a was performed in state s.

It should be noted that the transition between two states
is a random process governed by the token distribution
parametrized by the LLM (Equation 1). Given a start-
ing thought graph Gt = ({v}, ∅) corresponding to start-
ing state s0 = ({v}, ∅, {λ(v)}), where v represents the
starting problem, the action ϕsol yields a solution state s′

with probability P (s′ | s0, ϕsol). A solution state is any
state with at least one node v′ that has λ(v′) = 1, e.g.
s′ = ({v, v′}, {(v, v′)}, {λ(v), 1}). The optimal transfor-
mation sequence Φ is then defined as the sequence of actions
that maximize the conditional probability of reaching a solu-
tion state s+, i.e. Φ = (ϕ0, ..., ϕn) that solves the following
optimization problem.

max
Φ

P (s+ | s0,Φ)

s.t. |Φ| < ϵ

We bound the number of queries by the constant ϵ, as in the
limit |Φ| → ∞, P (s+|s0,Φ)→ 1.

4.1. Multi-Agent Reasoning

Given the infeasibility of characterizing the distribution
for the full set of state/action pairs for arbitrary tasks, we
hypothesize that LLMs can approximate a solution to the
stated optimization problem by acting as policy agents. We
develop an interactive framework consisting of a policy
agent and a reasoning agent, as shown in Figure 2. In each
iteration, (1) the policy agent selects an action from the
action space, outlining its rationale. (2) The policy agent
directs the reasoning agent to perform the selected action,
through futher LLM calls or otherwise. (3) The reasoning
agent updates the thought graph. The process is repeated
until a solution is found or a maximum number of iterations
is reached, at which point the trial history is updated.

The policy agent is invoked using the prompt template
shown in Figure 2. (i) The system prompt outlines the
problem setting, input format and expected behaviour from
the policy agent. (ii) A task-specific list of actions, describ-
ing the preconditions and effects of each transformation,
provides a semantic understanding of the action space. (iii)
The current state of the graph is provided in a textual format,
enumerating all nodes and edges. (iv) The action history in
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Figure 2. Interaction between the policy and reasoning agents. Each iteration involves (1) action samling by the policy agent, (2) message
passing among agents, and (3) updating the thought graph. The prompt template for the policy agent includes (i) general instructions,
(ii-iv) an overview of the exploration state, and (v) feedback from previous trials. After analyzing the state of the thought graph, the agent
selects an action, a subset of nodes and the number of attempts for the next action.

the current trial is included, promoting continuity in strate-
gies outlined in previous steps. Finally, (v) a number of
examples of previous trials are included to guide the agent
to tune its exploration strategy based on past experiences.

4.2. In-Context Action Selection

Prior work has shown that reasoning abilities of LLMs are
enhanced when prompted to output a verbose sequence of
steps before the solution (Wei et al., 2023; Wang et al.,
2023). This mechanism can be seen as enabling in-context
task learning from some extracted innate world knowledge.
A such, our policy agent is instructed generate a detailed
analysis on the state of the thought graph and and explo-
ration history before sampling the action space. The analysis
includes the following components.

1. Describe the action history and how each action relates
to an exploration strategy.

2. Describe the state of the thought graph, including how
each node corresponds to a previous action.

3. Discuss the outlined strategy, stating whether it is suc-
cessful, unsucessful, or pending further actions.

4. Outline a number of options for the next action, detail-
ing the expected outcome of each, and how it relates
to the current state of the thought graph.

4.3. Policy Agent Ensembles

Given the stochastic nature of token prediction as outlined in
Equation 1, we observe high variability in the chosen action
over several invocations of a policy agent under the same
thought graph state. Given the preconditions and effects of

each action are represented via text rather than any rigorous
formulation, actions selected by the policy agent can display
flawed understanding of the problem constraints, leading to
ineffective exploration of the thought graph. To overcome
this limitation, we democratize action selection over an
ensemble of agents, meaning a parametrizable number of
LLM queries are performed concurrently at every iteration.
The selected action is takes as the most frequent proposal
among the ensemble.

5. Experiments
We evaluate Llama-3.1-70b, and Llama-3.1-405b as policy
and reasoning agents with a temperature of 1. Llama-3.1-
70B was hosted using SGLang on a machine with 8 A6000
GPUs. Llama-3.1-405B was hosted using 16 H100 GPUs
distributed over 4 nodes.

5.1. Benchmarks

We choose two popular tasks for topological reasoning with
LLMs, which are amenable to a divide-and-conquer strategy
(i.e. decomposition, solving subproblems and merging): list
sorting and set intersection. Despite their simplicity, prior
works have shown that LLMs display low performance on
these tasks in naive autoregressive decoding (Besta et al.,
2024). We evaluate sorting and set intersection at various
levels of difficulty, quantified by the size of the lists and
sets, respectively. For each task, we report the mean value
of the score function E over a set of trials, which we find
to be the most indicative metric for evaluating performance
across various methods.

Sorting: involves sorting a list of numbers between 0 and
9 in ascending order. The score function E = X + Y has
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its subterms defined in Equation 4, where a is the input
list and b is a candidate solution. X corresponds to the
number of incorrectly sorted pairs, while Y corresponds to
the frequency difference between a and b for each digit.

X =

m−1∑
i=1

sign(max(bi − bi+1, 0)) (4)

Y =

9∑
i=0

||bp : bp = i| − |aq : aq = i||

Set Intersection: involves finding the intersection of sets A
and B. The score function is defined in Equation 5, where
C is the candidate solution. The first and second terms
correspond to missing and extra elements, respectively.

E = |(A ∩B) \ C|+ |C \ (A ∩B)| (5)

5.2. Static Schedule Parameter Search

As described in Section 3, a static exploration schedule can
be characterized using a set of discrete parameters. We ran
bayesian search using using Tree-structured Parzen Estima-
tor (TPE) sampling to determine each parameter, establish-
ing strong baselines for each task.

Table 2. Search space for each parameter characterizing a static
exploration schedule.

Search
Parameter Space

Red Allow reduction {0, 1}
Ref Allow refinement {0, 1}
Sm Solve multiplicity {1, 5, 10, 15, 20}
Am Aggregate multiplicity {1, 5, 10, 15, 20}
Rm

ef Refine multiplicity {1, 5, 10, 15, 20}

The search space is shown in Table 2. We run multi-
objective search to concurrently minimize the task-specific
error function E (Section 5.1) and associated cost, measured
as |Φ(ω)| where Φ(ω) = (ϕ0, ..., ϕm) is a tuple enumer-
ating thought graph transformations, as a function of the
schedule parameters ω ∈ Ω, where Ω is the search space.
Note that |Φ(ω)| correlates with the number of LLM queries,
meaning this formulation aims to minimize eploration cost.

In selecting parameter configurations, we use the cost func-
tion in Equation 6, such that the objectives of cost and
error minimization are balanced through the scalar constant
α ∈ (0, 1). We aim to assign equal importance to the cost
and error objectives by tuning α independently for each task
such that the mean value of the first term matches the sec-
ond term, i.e. αE [E ] = (1−α)E [|Φ(ω)|)], or equivalently

α = E[|Φ(ω)|]
E[E+|Φ(ω)|] where E denotes the expected value. The

expectations are obtained with random sampling.

min
ω

[αE + (1− α)|Φ(ω)|] (6)

Search was conducted separately on Llama-3.1-70b and
Llama-3.1-405b. Configurations obtained from the 405b
model were reused on Claude-3.5-Haiku and GPT-4o with-
out further search, as these models are deemed to have
similar reasoning abilities. For sorting and set intersec-
tion tasks, search is conducted separately for each difficulty
level, ensuring the chosen parameters are adapted to the
task. Note that we present three search checkpoints GoTn

for n ∈ {25, 50, 100}, where n corresponds to the percent-
age of trials until convergence. We define the convergeance
point as the first iteration where a rolling window J of size
20 matches the condition Jk = Jk−1. This enables com-
paring our proposed LLM-guided approach to optimized
search schedules at various search budgets.

Table 3. Results from GoT static schedule parameter search on
Llama-3.1-405b.

Task Alpha (α) GoT25 GoT50 GoT100

sorting32 0.99 0.38 0.38 0.37
sorting64 0.96 4.85 4.49 3.84

sorting128 0.84 28.76 25.76 24.36
set32 0.99 0.16 0.16 0.12
set64 0.99 0.71 0.51 0.31
set128 0.98 3.51 3.51 2.99

The complete search results for Llama-3.1-405b are shown
in Table 3, while results for Llama-3.1-70b are shown in
Appendix B. It can be seen that tasks with higher decom-
position depth incur lower values of α due to the higher
magnitude of the error function. sorting64, sorting128 and
set-intersection64 show a smooth decline in the cost func-
tion, while the remaining tasks remain at local minima until
close to the end of the search. The non-convexity of the
search space highlights the cost associated to optimize the
parameter set associated with static exploration schedules.

5.3. Results

The parameters obtained from bayesian search (Section 4)
were used to define the static schedule parameters for GoT
baselines at various search budgets. In Table 5.2, these
are compared against the LLM-guided thought graph ex-
ploration approach outlined in Section 3. We make the
following observations based on the results.

Expectedly, the obtained error values are lower for all tasks
with Llama-405b relative to Llama-70b, due to the im-
proved reasoning performance of models with larger pa-
rameter counts. In fact, The LLM-guided graph explo-
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Table 4. Core results for topological reasoning across all tasks and models. We show the mean value of the score function E (↓), which is
defined for each task in Section 5. GoT100, GoT50, GoT25 represent the obtained values from static schedule parameters obtained at
convergeance, 50% and 25% of convergeance trials, respectively.

Task Llama-70b Llama-405b

GoT25 GoT50 GoT100 GoTLLM GoT25 GoT50 GoT100 GoTLLM

sorting32 0.82 0.95 0.73 1.29 0.74 0.82 0.28 0.22
sorting64 4.73 4.73 4.64 10.04 2.22 2.74 3.46 9.15

sorting128 16.18 13.86 16.07 31.79 13.96 12.65 18.65 32.74
set-intersection32 0.41 0.0 0.37 1.22 0.07 0.0 0.09 0.03
set-intersection64 3.40 2.66 1.27 7.34 0.67 0.64 0.72 1.08

set-intersection128 13.23 12.92 12.73 22.98 1.07 0 2.54 4.62

ration with Llama-70b leads to no improvement relative
to static schedules obtained from bayesian search across
all tasks, outlining the poor planning abilities of smaller
models. Additionally, we observe that further search trials
at times cause an increase in error values, i.e. the condition
GoT100 < GoT50 < GoT25 is not met. This is understood
due to the multi-objective search formulation, causing the
optimizer to prioritize configurations with improved query
efficiency, despite incurring an error cost.

Despite the stated observations, the LLM-guided thought
graph exploration leads to improvements in the sorting32
and set-intersection32 tasks, which have lower decomposi-
tion depth. In sorting32, GoTLLM leads to a 3.3× improve-
ment relative to GoT25, as well as a 1.3× improvement rela-
tive to the configuration obtained at convergeance (GoT100).
In set-intersection32, we observe a 2.33× improvement rel-
ative to GoT25, although search achieves zero error after
50% of convergeance. These gains are obtained despite no

search cost, outlining the potential of LLM-guided thought
graph exploration. On the other hand, the LLM-guided
thought graph exploration leads to performance deteriora-
tion in tasks with higher decomposition depth. In sorting62,
sorting128, set-intersection64 and set-intersection128, the
performance penalties relative to GoT25 are 4.15×, 2.34×,
1.6× and 4.31×, respectively.

5.4. Query Efficiency Analysis

In addition to investigating the achievable performance on
reasoning tasks, we are interested in the query efficiency,
i.e. the ratio between achieved acurracy and required num-
ber of LLM queries, for each thought graph exploration
methodology. In Figure 5.2, we show the accuracy growth
with respect to the number of reasoning LLM agent queries.
We compare GoTLLM to GoT100, as the latter represents
a near-optimal trade-off in error and cost obtained with a
significant search cost.

Figure 3. Growth plot for set-intersection32 and sorting32 task accuracy (↑) with the number of reasoning agent LLM queries. Llama-3.1-
405b was used for both reasoning and planning agents across all GoT baselines and the LLM-guided approach. Note that policy agent
queries are not considered, i.e. the queries required to analyze the thought graph and sample the action space.
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We observe variability across the tasks, due to the adap-
tiveness of the LLM guided exploration strategies. In the
set-intersection32 task, the query efficiency for GoTLLM is
29.3% higher than GoT100, meaning the policy agent is able
to leverage the task simplicity to explore direct solutions
that fall beyond the scope of static schedules. Note that sort-
ing32 is a comparably more difficult task, which is further
reflected in the error function values shown in Table 5.2.
In this case, the policy agent adapts to increased complex-
ity with a significantly higher number of reasoning agent
queries, as new strategies are explored and refined. This
leads to 50% worse query efficiency, although the accuracy
is comparable to the search convergeance point (only 3%
lower) and 26% higher than the GoT50 baseline. It should be
noted that despite the loss in test-time query efficiency, there
is no search cost associated with the LLM-guided approach.

6. Discussion and Future Work
The LLM-guided thought graph exploration approach shows
promise in tasks with low decomposition depth, where the
policy agent can leverage the task simplicity to explore di-
rect solutions that fall beyond the scope of static schedules.
However, the approach leads to performance deterioration
in tasks with high decomposition depth, where the policy
agent is unable to identify the sequence of transformations
required to merge solutions of subproblems back into a com-
plete solution. We consider the following avenues of future
work to improve the query efficiency and generalization of
LLM-guided thought graph exploration.

Strategy Feedback: When solving the same problem re-
peatedly with different data, a policy agent can learn from
past experiences to improve its reasoning performance. Ef-
ficient strategies are rewarded with positive feedback from
successful trials, while inefficient strategies can be avoided
with negative feedback from unsuccessful trials. In particu-
lar, we observe that in tasks with high decomposition depth,
policy agents fail to identify the sequence of transformations
required to merge solutions of subproblems back into a com-
plete solution, which can be overcome through improved
exemplars of such action sequences. However, consider-
ing the context length constraint in LLMs, trial feedback
requires an efficient sampling method to select a limited
number of examples that maximize the information gain.

Action Scheduling for Enhanced Query Efficiency: De-
spite the gains in generalization and performance at low
decomposition depths, we observe a loss in query efficiency
in LLM-guided thought graph exploration. This problem is
inherent to this approach, as further queries are required to
sample the action space before guiding the reasoning agent.
We consider multi-step scheduling as a potential solution to
alleviate this problem, whereby the policy agent outlines a
sequence of n actions at a time, rather than a single action.

This would lead to a significant reduction in the number of
queries, despite potentially impacting performance when
incorrect action sequences are proposed. As such, the n
hyperparameter must be tuned to balance efficiency gains
with accuracy loss.

Heterogeneous Multi-Agent Reasoning: In this work, we
make the simplification of using the same model across all
agents in our experiments. However, policy and reasoning
agents present a diverse set of requirements - while rea-
soning agents require extensive world knowledge, policy
agents require long-horizon planning capabilities. As such,
further benefits can be obtained through a heterogeneous
approach where each agent in the system is optimized for its
specific task. This can take the form of fine-tuning for better
alignment of policy agents, or deploying smaller models
for solving subproblems with lower complexity. The adap-
tiveness of LLM policy agents can extend to dynamically
allocating workloads to models of varying sizes, reducing
cost by leveraging smaller models when appropriate.

Beyond Iterative Multi-Agent Collaboration: In our
framework, the interaction between policy and reasoning
agents follows a simple iterative schedule. In each iteration,
the policy agent is prompted to outline its thought process
in sampling the action space, which is analogous to CoT (or
CoT-SC in the case of policy agent ensembles). However,
sampling the thought graph action space is in itself a com-
plex reasoning problem, due to the nuance of formulating
a correct strategy according to the thought graph state. As
such, the policy agent could benefit from a ToT strategy to
sample and evaluate multiple reasoning strategies in par-
allel, rather than a single action. This could lead to more
coherent strategies, potentially improving task outcomes.
The effectiveness of this approach is subject to the effective
evaluation of action subsequences.

7. Conclusion
In this paper, we present a novel approach to topological
reasoning with LLMs, where a policy agent guides a rea-
soning agent in exploring thought graphs. We show that
LLMs can be leveraged to approximate a solution to the
optimization problem of finding a sequence of actions that
maximize the probability of reaching a solution state. We
evaluate our approach on three popular tasks for topolog-
ical reasoning, showing that LLM-guided thought graph
exploration leads to improvements in tasks with low de-
composition depth, while deteriorating performance in tasks
with high decomposition depth. We outline avenues of fu-
ture work to improve the query efficiency and generalization
of LLM-guided thought graph exploration.
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Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Exploration Schedules

Require: Starting prompt x
O ← sort(x)

Return: O

(a) Input/Output (IO)

Require: Starting prompt x
Require: Width w
G ← ∅

for b ∈ [0, w)
G ← sort(x)

end for
G ← score(G)
O ← keepbest(G)
Return: O

(b) Chain-of-Thoughts with Self
Consistency (CoT-SC)

Require: Starting prompt x
Require: Width w
Require: Depth d
G ← ∅

for b ∈ [0, w)
G ← sort(x)

end for
G ← score(G)
O ← keepbest(G)
for l ∈ [0, d− 1)
G ← refine(B)

G ← score(G)
O ← keepbest(G)
end for
Return: O

(c) Tree-of-Thoughts

Require: Starting prompt x
Require: Width w
Require: Depth d
G ← ∅

for b ∈ [0, w)
G ← sort(x)

end for
G ← score(G)
O ← keepbest(G)
for l ∈ [0, d− 1)
G ← sort(B)

G ← score(G)
O ← keepbest(G)
end for
Return: O

(d) Graph-of-Thoughts

Figure 4. Exploration schedules for solving the number sorting problem with various prompting strategies: (a) Input/Output (IO)
Prompting, (b) Chain-of-Thought with Self-Consistency (CoT-SC), (c) Tree-of-Thoughts (ToT), and (d) Graph-of-Thoughts (GoT).
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B. Llama-3.1-70b Search Results

Table 5. Results from GoT static schedule parameter search for Llama-3.1-70b. The GoT5, GoT25 and GoT50 columns show the optimal
values of the cost function (Equation 6) after 5, 25 and 50 trials, respectively.

Task Alpha (α) GoT5 GoT25 GoT50

sorting32 0.97 1.38 1.13 1.01
sorting64 0.95 5.19 5.19 4.85

sorting128 0.87 22.64 19.51 17.58
set32 0.99 0.51 0.14 0.04
set64 0.97 3.21 2.43 1.62
set128 0.91 18.34 17.12 13.51
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